DTAF Dye Concentrations Commonly Used to Measure Microscale Deformations in Biological Tissues Alter Tissue Mechanics
نویسندگان
چکیده
Identification of the deformation mechanisms and specific components underlying the mechanical function of biological tissues requires mechanical testing at multiple levels within the tissue hierarchical structure. Dichlorotriazinylaminofluorescein (DTAF) is a fluorescent dye that is used to visualize microscale deformations of the extracellular matrix in soft collagenous tissues. However, the DTAF concentrations commonly employed in previous multiscale experiments (≥2000 µg/ml) may alter tissue mechanics. The objective of this study was to determine whether DTAF affects tendon fascicle mechanics and if a concentration threshold exists below which any observed effects are negligible. This information is valuable for guiding the continued use of this fluorescent dye in future experiments and for interpreting the results of previous work. Incremental strain testing demonstrated that high DTAF concentrations (≥100 µg/ml) increase the quasi-static modulus and yield strength of rat tail tendon fascicles while reducing their viscoelastic behavior. Subsequent multiscale testing and modeling suggests that these effects are due to a stiffening of the collagen fibrils and strengthening of the interfibrillar matrix. Despite these changes in tissue behavior, the fundamental deformation mechanisms underlying fascicle mechanics appear to remain intact, which suggests that conclusions from previous multiscale investigations of strain transfer are still valid. The effects of lower DTAF concentrations (≤10 µg/ml) on tendon mechanics were substantially smaller and potentially negligible; nevertheless, no concentration was found that did not at least slightly alter the tissue behavior. Therefore, future studies should either reduce DTAF concentrations as much as possible or use other dyes/techniques for measuring microscale deformations.
منابع مشابه
Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa.
It is widely considered that intraocular pressure (IOP)-induced deformation within the neural tissue pores of the lamina cribrosa (LC) contributes to neurodegeneration and glaucoma. Our goal was to study how the LC microstructure and mechanical properties determine the mechanical insult to the neural tissues within the pores of the LC. Polarized light microscopy was used to measure the collagen...
متن کاملA particle based model to simulate microscale morphological changes of plant tissues during drying.
Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processin...
متن کاملA fiber-reinforced Transversely Isotropic Constitutive Model for Liver Tissue
Biomechanical properties of soft tissue, such as liver, are important in modeling computer aided surgical procedures. Experimental evidences show that liver tissue is transversely isotropic. In this article, considering the liver tissue as an incompressible fiber-reinforced composite with one family of fibers, an exponential strain energy function (SEF) is proposed. The proposed SEF is based on...
متن کاملInvestigation of metal element concentrations in tissue of Rutilus frisii in the Southwest Caspian Sea
Caspian kutum, Rutilus frisii Kamensky 1901, is a commercially important fish species in the southern part of the Caspian Sea. All of the metal entered in the Caspian Sea. The pollution of this metal cause To create environmental problem. To address the issue, some 51 R. frisii specimens were caught at five different fishing regions (including Astara, Anzali, Kiashahr,) of the southern shorelin...
متن کاملPrinting of stretchable silk membranes for strain measurements.
Quantifying the deformation of biological tissues under mechanical loading is crucial to understand its biomechanical response in physiological conditions and important for designing materials and treatments for biomedical applications. However, strain measurements for biological tissues subjected to large deformations and humid environments are challenging for conventional methods due to sever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014